Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190.
نویسندگان
چکیده
Diversity of Bacteria and Archaea was studied in deep marine sediments by PCR amplification and sequence analysis of 16S rRNA and methyl co-enzyme M reductase (mcrA) genes. Samples analysed were from Ocean Drilling Program (ODP) Leg 190 deep subsurface sediments at three sites spanning the Nankai Trough in the Pacific Ocean off Shikoku Island, Japan. DNA was amplified, from three depths at site 1173 (4.15, 98.29 and 193.29 mbsf; metres below the sea floor), and phylogenetic analysis of clone libraries showed a wide variety of uncultured Bacteria and Archaea. Sequences of Bacteria were dominated by an uncultured and deeply branching 'deep sediment group' (53% of sequences). Archaeal 16S rRNA gene sequences were mainly within the uncultured clades of the Crenarchaeota. There was good agreement between sequences obtained independently by cloning and by denaturing gradient gel electrophoresis. These sequences were similar to others retrieved from marine sediment and other anoxic habitats, and so probably represent important indigenous bacteria. The mcrA gene analysis suggested limited methanogen diversity with only three gene clusters identified within the Methanosarcinales and Methanobacteriales. The cultivated members of the Methanobacteriales and some of the Methanosarcinales can use CO2 and H2 for methanogenesis. These substrates also gave the highest rates in 14C-radiotracer estimates of methanogenic activity, with rates comparable to those from other deep marine sediments. Thus, this research demonstrates the importance of the 'deep sediment group' of uncultured Bacteria and links limited diversity of methanogens to the dominance of CO2/H2 based methanogenesis in deep sub-seafloor sediments.
منابع مشابه
Controls on Microbial Communities in Deeply Buried Sediments, Eastern Equatorial Pacific and Peru Margin
Ocean Drilling Program Leg 201 was the first ocean drilling expedition dedicated to the study of life deep beneath the seafloor. Its seven sites were selected to represent the general range of subsurface environments that exist in marine sediments throughout most of the world’s oceans. In water depths as great as 5300 m and as shallow as 150 m, the expedition drilled as deep as 420 m into ocean...
متن کاملAssessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: a cautionary tale.
Investigations into the deep marine environment have demonstrated the presence of a significant microbial biomass buried deep within sediments on a global scale. It is now believed that this deep biosphere plays a major role in the global cycling of elements and contains a large reservoir of organic carbon. This paper reports the development of a DNA extraction protocol that addresses the parti...
متن کاملIODP Expedition 333: Return to Nankai Trough Subduction Inputs Sites and Coring of Mass Transport Deposits
Integrated Ocean Drilling Program (IODP) Expedition 333 returned to two sites drilled during IODP Expedition 322 on the ocean side of the Nankai Trough to pursue the characterization of the inputs to the Nankai subduction and seismogenic zone, as part of the Nankai Trough Seismogenic Experiment (NanTroSEIZE) multi-expedition project. Site C0011 is located at the seaward edge of the trench and S...
متن کاملShewanella profunda sp. nov., isolated from deep marine sediment of the Nankai Trough.
A novel piezotolerant, mesophilic, facultatively anaerobic, organotrophic, polarly flagellated bacterium (strain LT13a(T)) was isolated from a deep sediment layer in the Nankai Trough (Leg 190, Ocean Drilling Program) off the coast of Japan. This organism used a wide range of organic substrates as sole carbon and energy sources: pyruvate, glutamate, succinate, fumarate, lactate, citrate, pepton...
متن کاملCharacterization of Metabolically Active Bacterial Populations in Subseafloor Nankai Trough Sediments above, within, and below the Sulfate–Methane Transition Zone
A remarkable number of microbial cells have been enumerated within subseafloor sediments, suggesting a biological impact on geochemical processes in the subseafloor habitat. However, the metabolically active fraction of these populations is largely uncharacterized. In this study, an RNA-based molecular approach was used to determine the diversity and community structure of metabolically active ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental microbiology
دوره 6 3 شماره
صفحات -
تاریخ انتشار 2004